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Scaling behavior in explosive fragmentation

A. Diehl,1 H. A. Carmona,2 L. E. Araripe,1 J. S. Andrade, Jr.,1,3 and G. A. Farias1
1Departamento de Fı´sica, Universidade Federal do Ceara´, 60451-970 Fortaleza, Ceara´, Brazil

2Departamento de Fı´sica e Quı´mica, Universidade Estadual do Ceara´, 60740-000 Fortaleza, Ceara´, Brazil
3PMMH-ESPCI, 10 rue Vauquelin, 75231 Paris Cedex 05, France

~Received 8 June 2000!

We investigate the explosive fragmentation process in two dimensions using molecular-dynamics simula-
tions. We show that the mass distribution of fragments follows a power law, with a scaling exponent that is
strongly dependent on the macroscopic characteristics of the system prior to the explosion process. In particu-
lar, for thermalized initial configurations at low temperatures, we observe that the exponent is close to21. We
suggest that this result can be interpreted in terms of a multiplicative fracture process.

PACS number~s!: 46.50.1a, 64.60.Ak
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I. INTRODUCTION

The fragmentation process is ubiquitous in everyday l
From practical experience, we know that an object un
stress or shock will break up into smaller pieces. Althou
complex under a microscopic point of view, some rema
able statistical features can be observed. The form of
mass distribution of fragments, for example, has receive
lot of attention in recent years. Experiments on impact fr
mentation using glass spheres show that the mass dist
tion follows a power law, with an exponent2 2

3 @1#. Ishii and
Matsushita@2# have studied the fragment size and mass d
tribution of long, thin glass rods and found that they chan
from a log-normal to a power-law form as the falling heig
is increased. Oddershedeet al. @3# observed a power-law
distribution in experiments of impact fragmentation usi
different materials~e.g., gypsum, soap, and stearic! of differ-
ent shapes~e.g., balls, cubes, plates, and bars!. The scaling
exponent was found to be rather dependent on the shap
the object, but insensitive to the type of material. This ex
nent independence was then interpreted as an evidence
fragmentation can be a self-organized critical phenom
@4#. Using thick plates of dry clay, Meibom and Balslev@5#
observed that the mass distribution of fragments display
crossover between two different power-law regimes for fr
ments larger and smaller than the plate thickness. Fina
power-law behavior has also been observed insandwichex-
periments using thin glass and plaster plates, but the e
nent, once more, was shown to be nonuniversal with
input energy@6#.

The foregoing experimental observations about the fr
mentation process induced many theoretical studies.
simplest one, based on an one-dimensional process@2,7#,
predicts a log-normal distribution. More realistic models, u
ing assumptions about preexisting flaws and break
mechanisms, yield power-law behavior@8,9#. Incorporating
hierarchical order to the process in a probabilistic type
model, Marsili and Zhang@10# could predict a nonuniversa
power-law behavior for fragmentation, with an exponent t
is dependent on its detailed breaking mechanism and in
conditions. These models, however, are not able to reprod
the nonuniversal behavior observed in experiments.

The numerical modeling of the fragmentation process r
PRE 621063-651X/2000/62~4!/4742~5!/$15.00
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resents today an important tool for the understanding of
microscopic mechanisms governing this physical pheno
enon. For example, Hayakawa@11# observed power-law be
havior modeling a three-dimensional fractured object by
set of mass points connected by elastic springs. Inaokaet al.
@12# modeled a fracture in terms of a competitive proce
taking place during the crack propagation. The result
power-law behavior followed by a flat tail in the cumulativ
distribution of mass fragments is consistent with the exp
mental observations of Meibom and Balslev@5#.

Recently, Chinget al. @13# studied fragmentation using
molecular-dynamics~MD! approach similar to the one intro
duced by Holian and Grady@14#. The fragmented object is
represented as a set of particles interacting via the Lenn
Jones~LJ! potential, while the fracture process develops d
to random initial velocities assigned to the particles. T
resulting steady-state cumulative mass distribution has an
fective power-law region, with an exponent that increas
with the initial energy assigned to the particles. Chinget al.
interpreted this dependence in the exponent as an indica
that fragmentation is not a self-organizing phenomenon, c
trary to the assumption of Oddershedeet al. @3#.

The question of criticality in fragmentation, however,
far from being completely answered. Very recently, it h
been suggested that, in impact fragmentation, critica
could be tuned at a nonzero impact energy@15,16#, so that
the fragment-size distribution should satisfy a scaling fo
similar to that of the cluster-size distribution of percolatio
clusters, but belonging to another universality class@17#. In
the present paper, we investigate the explosive fragmenta
process using classical MD simulations. We study the m
distribution of fragments focusing on the dependence of
scaling exponent with the external input energy provided
‘‘explode’’ a given object. Contrary to the observation
made in Ching’set al. experiment@13#, we show that the
fragment mass distribution displays power-law behavi
with a scaling exponent that is independent of the input
ergy. Our simulations indicate, however, that this exponen
sensitive to the way in which the object to be fragmented
prepared, i.e., to the initial configuration of the system. T
structure of this paper is the following. The model for fra
mentation and the simulation details are described in Sec
In Sec. III, we present and discuss our results and the c
4742 ©2000 The American Physical Society
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FIG. 1. Snapshots of the initia
state representing the object to b
fragmented, in a thermalized con
figuration, at a reduced tempera
ture ~a! T* 5kT/e50.37 and~b!
T* 50.037. In ~c! and ~d!, we
show the resulting fragmente
states of~a! and ~b!, respectively,
after 150 000 MD time steps an
usingR50.43 for both cases. The
number density isrs250.61 in
all cases and the number of pa
ticles is fixed toN540 000. The
xy coordinates are in LJ units.
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II. MODEL

In order to model the fragmentation process, we start
describing the system to be fragmented. For the sake of c
parison with previous studies@13#, we build up an object in
two different ways. In therandominitial configuration case,
we just place the particles randomly in the MD simulati
box, according to the desired number density, and the p
cle’s velocities are settled in random directions. In the s
ond case, we use MD simulation to generate athermalized
configuration as an initial state of the system. The partic
interact through a 6212 LJ pair potential and the system
brought to the desired equilibrium temperature, using
neighbor-list method with periodic boundary conditions
all directions. This allows us to simulate as much as 40 0
particles with a 300 MHz Pentium II PC.

In Figs. 1~a! and 1~b! we show snapshots of the initia
thermalized configurations for a two-dimensional object w
40 000 particles and number densityr* 5rs250.61. In Fig.
1~a! the reduced temperature isT* 5kT/e50.37, while in
case~b! the temperature isT* 50.037. Here,s ande are the
LJ distance and energy units, respectively. The positions
velocities obtained with these processes are then used a
tial states in the fragmentation process.

To simulate the expansion process that follows an exp
sive event, one can add an isotropic term to the initial
locities, as follows@13–15#:

v i~0!5v i
T1Cr i~0!, ~1!

where v i
T are the initial velocities andr i(0) are the initial

positions, obtained in the previous~randomic or thermalized!
stage. The proportionality constantC ~with units of inverse
of time! is a measure of the initial energy imparted to t
object. From time zero onward, no energy is added to
system and the particles positions and velocities are obta
y
m-
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by solving Newton’s equations of motion withfree boundary
conditions, different from the expanding boundary cond
tions used by Holian and Grady@14#. It is useful to introduce
here the parameterR, the ratio between the initial~total!
kinetic energy to the initial potential energy, immediate
after the velocities are settled according to Eq.~1!. As a
result, the system expands and the particles distribute th
selves in clusters~or fragments! of different masses@see
Figs. 1~c! and 1~d!#.

In order to generate good statistics, we adapted
neighbor-list method@18# to account for the free boundar
conditions in the fragmentation process. Basically, at ti
zero, we use a simulation box larger then the one used
building the object. This is our fragmentation space. T
large simulation box is divided into cells, in the usual ma
ner of the neighbor-list method, but without introducing p
riodic boundary conditions. At each step, we check if there
a particle crossing the boundary of the simulation box. If th
is the case, we rescale the size of the box and rebuild
neighbor list. To update the particle’s coordinates and velo
ties, we use the leapfrog integration technique@18# with a
time stepDt50.005, which is sufficiently small to ensur
global energy conservation.

Next, we perform the cluster~or fragment! identification
and counting. Each particle is considered as a monom
cluster with unitary mass. Two particles will belong to th
same cluster if they are separated by a distance smaller
an arbitrary cutoff,r c53s. The fragments are classified a
cording to their massm and counted to compute the distr
bution n(m), normalized here by the total number of fra
ments. Asn(m) is not a continuous function, it is mor
convenient to work with the cumulative distribution@3#, the
total number of fragments with masses larger than or eq
to m, defined as

F~m!5
1

mE
m

`

n~m8!dm8. ~2!
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As in Ref. @3#, if n(m) follows a power law,n(m)}m2b,
F(m) should also exhibit scaling with the same exponentb.
As shown in Fig. 2, although the system is free to expa
the cumulative distributionF(m) becomes steady after a su
ficient number of time steps. In our simulations, we on
calculateF(m) after 150 000 time steps.

III. RESULTS AND DISCUSSION

For the sake of comparison with previous results~see Ref.
@13#!, we first present results obtained with random init
configurations. The number density isr* 50.61 and N
540 000 particles. In Fig. 3 we plot the distributionF(m)
against the fragment massm for different values of the pa
rameterR. A power-law region can be observed for interm
diate masses, with an exponentb51.4060.02 for all cases.
For largem, the distributions fall off exponentially. Clearly
the exponentb is unchanged when the parameterR ~a mea-
sure of the input energy! is increased from 0.43 to 2.00. Th
width of the region for which the power law holds also b
comes narrower asR increases. It is the definition of th
range of fragment masses for which the power law holds
gives the larger source of error to the exponentb. Although
the value of the exponentb that we found is in agreemen
with the results obtained by Chinget al. @13#, namely,b
2150.41 for R50.43, we did not observe the energy d
pendence detected in their study. This can perhaps be a
uted to the small number of particles used in Ref.@13#, typi-
cally N54200.

Next we discuss the results of simulations performed w
thermalized states as initial configurations for the fragmen
tion process. In Fig. 4 the equilibrium temperature isT*
50.37, while the number density and the range ofR values
are the same as in Fig. 3. Again we observe a power-
region for intermediate masses, but now with an expon
b51.1460.03. The range of this scaling region is larg

FIG. 2. Double logarithmic plot of the cumulative mass dist
bution of fragmentsF(m) after 15 000 ~circles! and 150 000
~squares! MD time steps. Although the object is free to expa
indefinitely, the fragment mass distribution at the intermediate m
region becomes steady after a sufficient number of time steps.
parameters used in this simulation are the same as those used i
1~a!.
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than that in Fig. 3, extending over almost two orders of m
nitude forR50.43 and decreasing upon increasingR, as the
formation of large clusters becomes less probable with la
energy inputs. Analyzing the radial distribution functio
g(r ) for the initial configuration used in Fig. 4 we found th
the system is a mix solid-liquid phase.

In order to simulate the fragmentation of a solid, we d
crease the initial configuration temperature toT* 50.037,
maintaining the number densityr* 50.61. In Fig. 5 we show
the steady stateF(m) for a range ofR values between 0.43
and 2.00. Once again, we can identify a region of mas

ss
he
Fig.

FIG. 3. Double logarithmic plot of the cumulative mass dist
bution of fragmentsF(m) after 150 000 time steps, at differen
values ofR, obtained from an initial random configuration as show
in Ref. @13#. A power law is observed for an intermediate range
mass values, with an exponentb51.4060.02 independently ofR.
For largem, the distributions decay exponentially. The solid line
the inset is the least-square fit to the data in the scaling regions
all cases, with the number indicating the exponentb. The number
of particles is fixed toN540 000.

FIG. 4. Cumulative mass distribution for a thermalized init
configuration atT* 50.37 @see Fig. 1~a!#, for the same values ofR
and N used in Fig. 3. The power-law region is wider than th
obtained if Fig. 3 for the sameR, but now the scaling exponent i
b51.1460.03, as shown in the inset.
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where F(m) follows a power-law behavior, with an expo
nent b51.0560.02, which remains approximately un
changed within the range ofR values used in the simulations
It is important to mention that several test simulations
carried out with objects that are different, but prepared in
same way~e.g., two objects thermalized atT* 50.037),
showed the same power-law exponent.

The different values ofR used to generate Figs. 2–5 a
reached by increasing the value of the constantC in Eq. ~1!.
We observe that the exponentb is rather robust to changes i
the input energy. On the other hand, our results indicate
b is sensitive to the way in which the object to be fra
mented is prepared, that is, to the initial state of the syst
Indeed, when comparing the curves forR50.43 obtained
with different initial configurations, we see that the powe
law exponent varies fromb51.40 ~Fig. 3! to 1.05 ~Fig. 5!.
Therefore, we suggest that this exponent should solely
pend on themacroscopicproperties of the object. For in
stance, as the initial configuration resembles more close
solid state, the exponentb tends to a value close to 1.0
Additional simulations performed with a number dens
r* 50.95 and a reduced temperatureT* 50.37 ~a typical
two-dimensional LJ solid! produced a power-law exponen
of b51.0760.02.

It is possible to interpret the origin of the 1/m type of
distribution that we found for thermalized initial configur
tions at low temperatures, in terms of a typicalmultiplicative
process@19#. In the solid phase, the fragments form rapid
as one gives kinetic energy to the system. In this situat
the system has enough potential energy to hold clusters
gether. A small fragment with massMn is produced from a
large one with massM0 through a succession ofN breaks,
such that the differenceMn212Mn is a random portion of
the fragment with massMn21. If we apply the central limit
theorem@19#, and assume that every fragmentation of a cl
ter produces the same fractional increase to the distribu

FIG. 5. Cumulative mass distribution for the thermalized init
configuration shown in Fig. 1~b! (T* 50.037). The solid line cor-
responds to the cumulative formF(m) of the log-normal distribu-

tion @Eq. ~3!#, with logm̄55.9 ands254.0. According to the solid
line shown in the inset, a power law with an exponentb51.05
60.02 represents the least-square fit to the data in the scalin
gion.
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of fragment masses, it results thatn(m) should follow a
log-normal distribution,

n~m!5
1

mA2ps2
expF2~ logm2 logm̄!2

2s2 G , ~3!

where

logm̄5E
0

`

n~m!logmdm and s25~ logm!22~ logm̄!2.

~4!

If s2 is sufficiently large, only the 1/m term remains for
small masses. In our case,s2 can be quite large; for ex
ample,s254.0 and logm̄55.9 for a run with 40 000 par-
ticles at T* 50.037 andR50.43. As shown in Fig. 5, the
log-normal expression forF(m) with these parameters fit
well the results from numerical simulations. Therefore,
provides a plausible mechanism to explain the power-
behavior that we observe at low temperatures and in
range of small masses. Corrections to the 1/m distribution at
large masses are due to the finite size of the system.

For liquids, the fragmentation process is slower than
solids. Besides, there will be particles that do not belong
any cluster and eventually form other clusters, or adhere
an existing fragment, increasing its mass. In both cases,
amplification process may lead to a power-law distributi
with a coefficient different from21 @19#.

IV. CONCLUSIONS

In summary, we have presented in this paper a model
two-dimensional explosive fragmentation using molecul
dynamics simulation. The essential features of the fragm
tation process of an object composed by a set of Lenn
Jones particles are shown to be a result of the competi
between the input kinetic energy imparted to the system
the cohesive forces that maintain its integrity prior to t
explosion. Our simulations predict that the mass distribut
of fragments should display power-law behavior, with
exponent that is independent of the input energy represen
the explosion process. We show that, for an initial config
ration resembling a solid, the fragment mass distribution f
lows an 1/m behavior, consistent with a typical multiplica
tive process@19#.

How realistic is the fragmentation model used in o
simulations? For a solid object, like the one shown in F
1~b!, the observed scaling exponent corresponding to sm
masses is similar to that observed in experiments with g
sum disks@3#. However, the exponential crossover that w
observed for larger fragment masses cannot be attribute
the morphology of the object being fragmented, as in R
@3#. In our case, the crossover should be related to finite
and input energy effects, both limiting the largest fragme
mass.

It has recently been suggested that the crossover mas~or
the largest fragment mass! can be used as the order param
eter defining the critical region of fragmentation@16,17#. The
scaling exponent found in these studies is exactly one-ha
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the correlation length exponent for two-dimensional perco
tion clusters @17#. It appears that the results of ou
simulations, however, have no direct analogy with perco
tion theory. To elucidate the dependence of the exponen
crossover on the energy input found in our results, additio
simulations with larger systems and at several different c
ditions are needed.
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